References

References#

[1]

Alexander F. Shchepetkin and James C. McWilliams. The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9(4):347–404, January 2005. URL: https://linkinghub.elsevier.com/retrieve/pii/S1463500304000484 (visited on 2023-06-06), doi:10.1016/j.ocemod.2004.08.002.

[2]

Laurent Debreu, Patrick Marchesiello, Pierrick Penven, and Gildas Cambon. Two-way nesting in split-explicit ocean models: Algorithms, implementation and validation. Ocean Modelling, 49-50:1–21, June 2012. URL: https://linkinghub.elsevier.com/retrieve/pii/S1463500312000480 (visited on 2023-06-06), doi:10.1016/j.ocemod.2012.03.003.

[3]

F. Auclair, L. Bordois, Y. Dossmann, T. Duhaut, A. Paci, C. Ulses, and C. Nguyen. A non-hydrostatic non-Boussinesq algorithm for free-surface ocean modelling. Ocean Modelling, 132:12–29, December 2018. URL: https://linkinghub.elsevier.com/retrieve/pii/S1463500318302646 (visited on 2023-06-06), doi:10.1016/j.ocemod.2018.07.011.

[4]

John Marshall, Chris Hill, Lev Perelman, and Alistair Adcroft. Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. Journal of Geophysical Research: Oceans, 102(C3):5733–5752, March 1997. URL: http://doi.wiley.com/10.1029/96JC02776 (visited on 2023-06-06), doi:10.1029/96JC02776.

[5]

James C. McWilliams, Juan M. Restrepo, and Emily M. Lane. An asymptotic theory for the interaction of waves and currents in coastal waters. Journal of Fluid Mechanics, 511:135–178, 2004. URL: https://www.cambridge.org/core/article/an-asymptotic-theory-for-the-interaction-of-waves-and-currents-in-coastal-waters/DA4918B37321E8DF3D1DFADD776BA8F6, doi:10.1017/S0022112004009358.

[6]

T. Gerkema, J. T. F. Zimmerman, L. R. M. Maas, and H. Van Haren. Geophysical and astrophysical fluid dynamics beyond the traditional approximation. Reviews of Geophysics, 46(2):RG2004, May 2008. URL: http://doi.wiley.com/10.1029/2006RG000220 (visited on 2023-06-06), doi:10.1029/2006RG000220.

[7]

Patrick Marchesiello, Rachid Benshila, Rafael Almar, Yusuke Uchiyama, James C. McWilliams, and Alexander Shchepetkin. On tridimensional rip current modeling. Ocean Modelling, 96:36–48, December 2015. URL: https://linkinghub.elsevier.com/retrieve/pii/S1463500315001122 (visited on 2023-06-06), doi:10.1016/j.ocemod.2015.07.003.

[8]

Yusuke Uchiyama, James C. McWilliams, and Alexander F. Shchepetkin. Wave–current interaction in an oceanic circulation model with a vortex-force formalism: Application to the surf zone. Ocean Modelling, 34(1-2):16–35, January 2010. URL: https://linkinghub.elsevier.com/retrieve/pii/S1463500310000594 (visited on 2023-06-06), doi:10.1016/j.ocemod.2010.04.002.

[9]

Michael S. Longuet-Higgins. Mass transport in water waves. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 245(903):535–581, March 1953. URL: https://royalsocietypublishing.org/doi/10.1098/rsta.1953.0006 (visited on 2023-06-06), doi:10.1098/rsta.1953.0006.

[10]

John Casey Church and Edward B. Thornton. Effects of breaking wave induced turbulence within a longshore current model. Coastal Engineering, 20(1-2):1–28, July 1993. URL: https://linkinghub.elsevier.com/retrieve/pii/037838399390053B (visited on 2023-06-06), doi:10.1016/0378-3839(93)90053-B.

[11]

Edward B. Thornton and R. T. Guza. Transformation of wave height distribution. Journal of Geophysical Research, 88(C10):5925, 1983. URL: http://doi.wiley.com/10.1029/JC088iC10p05925 (visited on 2023-06-06), doi:10.1029/JC088iC10p05925.

[12]

Edward B. Thornton and R. T. Guza. Surf Zone Longshore Currents and Random Waves: Field Data and Models. Journal of Physical Oceanography, 16(7):1165–1178, July 1986. URL: http://journals.ametsoc.org/doi/10.1175/1520-0485(1986)016<1165:SZLCAR>2.0.CO;2 (visited on 2023-06-06), doi:10.1175/1520-0485(1986)016<1165:SZLCAR>2.0.CO;2.

[13]

Aike Beckmann and Dale B. Haidvogel. Numerical Simulation of Flow around a Tall Isolated Seamount. Part I: Problem Formulation and Model Accuracy. Journal of Physical Oceanography, 23(8):1736–1753, August 1993. URL: http://journals.ametsoc.org/doi/10.1175/1520-0485(1993)023<1736:NSOFAA>2.0.CO;2 (visited on 2023-06-06), doi:10.1175/1520-0485(1993)023<1736:NSOFAA>2.0.CO;2.

[14]

Robert L. Haney. On the Pressure Gradient Force over Steep Topography in Sigma Coordinate Ocean Models. Journal of Physical Oceanography, 21(4):610–619, April 1991. URL: http://journals.ametsoc.org/doi/10.1175/1520-0485(1991)021<0610:OTPGFO>2.0.CO;2 (visited on 2023-06-06), doi:10.1175/1520-0485(1991)021<0610:OTPGFO>2.0.CO;2.

[15]

Yves Soufflet, Patrick Marchesiello, Florian Lemarié, Julien Jouanno, Xavier Capet, Laurent Debreu, and Rachid Benshila. On effective resolution in ocean models. Ocean Modelling, 98:36–50, February 2016. URL: https://linkinghub.elsevier.com/retrieve/pii/S1463500315002401 (visited on 2023-06-06), doi:10.1016/j.ocemod.2015.12.004.

[16]

Alexander F. Shchepetkin and James C. McWilliams. Quasi-Monotone Advection Schemes Based on Explicit Locally Adaptive Dissipation. Monthly Weather Review, 126(6):1541–1580, June 1998. URL: http://journals.ametsoc.org/doi/10.1175/1520-0493(1998)126<1541:QMASBO>2.0.CO;2 (visited on 2023-06-06), doi:10.1175/1520-0493(1998)126<1541:QMASBO>2.0.CO;2.

[17]

C. Ménesguen, S. Le Gentil, P. Marchesiello, and N. Ducousso. Destabilization of an Oceanic Meddy-Like Vortex: Energy Transfers and Significance of Numerical Settings. Journal of Physical Oceanography, 48(5):1151–1168, May 2018. URL: https://journals.ametsoc.org/view/journals/phoc/48/5/jpo-d-17-0126.1.xml (visited on 2023-06-06), doi:10.1175/jpo-d-17-0126.1.

[18]

Rafael Borges, Monique Carmona, Bruno Costa, and Wai Sun Don. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. Journal of Computational Physics, 227(6):3191–3211, March 2008. URL: https://linkinghub.elsevier.com/retrieve/pii/S0021999107005232 (visited on 2023-06-06), doi:10.1016/j.jcp.2007.11.038.

[19]

Alexander F. Shchepetkin. An adaptive, Courant-number-dependent implicit scheme for vertical advection in oceanic modeling. Ocean Modelling, 91:38–69, July 2015. URL: https://linkinghub.elsevier.com/retrieve/pii/S1463500315000530 (visited on 2023-06-07), doi:10.1016/j.ocemod.2015.03.006.

[20]

P. Marchesiello and P. Estrade. Eddy activity and mixing in upwelling systems: a comparative study of Northwest Africa and California regions. International Journal of Earth Sciences, 98(2):299–308, March 2009. URL: http://link.springer.com/10.1007/s00531-007-0235-6 (visited on 2023-06-06), doi:10.1007/s00531-007-0235-6.

[21]

F. Lemarié, L. Debreu, A.F. Shchepetkin, and J.C. McWilliams. On the stability and accuracy of the harmonic and biharmonic isoneutral mixing operators in ocean models. Ocean Modelling, 52-53:9–35, August 2012. URL: https://linkinghub.elsevier.com/retrieve/pii/S1463500312000674 (visited on 2023-06-06), doi:10.1016/j.ocemod.2012.04.007.

[22]

Alexander F. Shchepetkin and James C. McWilliams. A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate. Journal of Geophysical Research, 108(C3):3090, 2003. URL: http://doi.wiley.com/10.1029/2001JC001047 (visited on 2023-06-07), doi:10.1029/2001JC001047.

[23]

Patrick Marchesiello, James C. McWilliams, and Alexander Shchepetkin. Open boundary conditions for long-term integration of regional oceanic models. Ocean Modelling, 3(1-2):1–20, January 2001. URL: https://linkinghub.elsevier.com/retrieve/pii/S1463500300000135 (visited on 2023-06-06), doi:10.1016/S1463-5003(00)00013-5.

[24]

David R. Jackett and Trevor J. Mcdougall. Minimal Adjustment of Hydrographic Profiles to Achieve Static Stability. Journal of Atmospheric and Oceanic Technology, 12(2):381–389, April 1995. URL: http://journals.ametsoc.org/doi/10.1175/1520-0426(1995)012<0381:MAOHPT>2.0.CO;2 (visited on 2023-06-07), doi:10.1175/1520-0426(1995)012<0381:MAOHPT>2.0.CO;2.

[25]

John C. Warner, Zafer Defne, Kevin Haas, and Hernan G. Arango. A wetting and drying scheme for ROMS. Computers & Geosciences, 58:54–61, August 2013. URL: https://linkinghub.elsevier.com/retrieve/pii/S0098300413001362 (visited on 2023-06-07), doi:10.1016/j.cageo.2013.05.004.

[26]

William G. Large. Modeling and Parameterizing the Ocean Planetary Boundary Layer. In Eric P. Chassignet and Jacques Verron, editors, Ocean Modeling and Parameterization, pages 81–120. Springer Netherlands, Dordrecht, 1998. URL: http://link.springer.com/10.1007/978-94-011-5096-5_3 (visited on 2023-06-07), doi:10.1007/978-94-011-5096-5_3.

[27]

W. G. Large, J. C. McWilliams, and S. C. Doney. Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics, 32(4):363, 1994. URL: http://doi.wiley.com/10.1029/94RG01872 (visited on 2023-06-07), doi:10.1029/94RG01872.

[28]

James C. McWilliams and Peter P. Sullivan. Vertical Mixing by Langmuir Circulations. Spill Science & Technology Bulletin, 6(3-4):225–237, June 2000. URL: https://linkinghub.elsevier.com/retrieve/pii/S135325610100041X (visited on 2023-06-07), doi:10.1016/S1353-2561(01)00041-X.

[29]

L. P. Van Roekel, B. Fox-Kemper, P. P. Sullivan, P. E. Hamlington, and S. R. Haney. The form and orientation of Langmuir cells for misaligned winds and waves: LANGMUIR UNDER MISALIGNED WIND AND WAVES. Journal of Geophysical Research: Oceans, 117(C5):n/a–n/a, May 2012. URL: http://doi.wiley.com/10.1029/2011JC007516 (visited on 2023-06-07), doi:10.1029/2011JC007516.

[30]

Qing Li, Adrean Webb, Baylor Fox-Kemper, Anthony Craig, Gokhan Danabasoglu, William G. Large, and Mariana Vertenstein. Langmuir mixing effects on global climate: WAVEWATCH III in CESM. Ocean Modelling, 103:145–160, July 2016. URL: https://linkinghub.elsevier.com/retrieve/pii/S1463500315001407 (visited on 2023-06-07), doi:10.1016/j.ocemod.2015.07.020.

[31]

Andrej Nikolaevich Kolmogorov. Equations of turbulent motion in an incompressible fluid. Dokl. Akad. Nauk SSSR, 30(4):299–303, 1942.

[32]

W.P Jones and B.E Launder. The prediction of laminarization with a two-equation model of turbulence. International Journal of Heat and Mass Transfer, 15(2):301–314, February 1972. URL: https://linkinghub.elsevier.com/retrieve/pii/0017931072900762 (visited on 2023-06-07), doi:10.1016/0017-9310(72)90076-2.

[33]

Lars Umlauf and Hans Burchard. A generic length-scale equation for geophysical turbulence models. Journal of Marine Research, 61:235–265, 2003.

[34]

M. M. Gibson and B. E. Launder. Ground effects on pressure fluctuations in the atmospheric boundary layer. Journal of Fluid Mechanics, 86(3):491–511, June 1978. URL: https://www.cambridge.org/core/product/identifier/S0022112078001251/type/journal_article (visited on 2023-06-08), doi:10.1017/S0022112078001251.

[35]

George L. Mellor and Tetsuji Yamada. Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics, 20(4):851, 1982. URL: http://doi.wiley.com/10.1029/RG020i004p00851 (visited on 2023-06-08), doi:10.1029/RG020i004p00851.

[36]

Lakshmi H. Kantha and Carol Anne Clayson. An improved mixed layer model for geophysical applications. Journal of Geophysical Research, 99(C12):25235, 1994. URL: http://doi.wiley.com/10.1029/94JC02257 (visited on 2023-06-08), doi:10.1029/94JC02257.

[37]

Patrick J. Luyten. An analytical and numerical study of surface and bottom boundary layers with variable forcing and application to the North Sea. Journal of Marine Systems, 8(3-4):171–189, September 1996. URL: https://linkinghub.elsevier.com/retrieve/pii/092479639600005X (visited on 2023-06-08), doi:10.1016/0924-7963(96)00005-X.

[38]

Y. Cheng, V. M. Canuto, and A. M. Howard. An Improved Model for the Turbulent PBL. Journal of the Atmospheric Sciences, 59(9):1550–1565, May 2002. URL: http://journals.ametsoc.org/doi/10.1175/1520-0469(2002)059<1550:AIMFTT>2.0.CO;2 (visited on 2023-06-08), doi:10.1175/1520-0469(2002)059<1550:AIMFTT>2.0.CO;2.

[39]

B. Galperin, L. H. Kantha, S. Hassid, and A. Rosati. A Quasi-equilibrium Turbulent Energy Model for Geophysical Flows. Journal of the Atmospheric Sciences, 45(1):55–62, January 1988. URL: http://journals.ametsoc.org/doi/10.1175/1520-0469(1988)045<0055:AQETEM>2.0.CO;2 (visited on 2023-06-08), doi:10.1175/1520-0469(1988)045<0055:AQETEM>2.0.CO;2.

[40]

Lionel Renault, S. Masson, T. Arsouze, Gurvan Madec, and James C. McWilliams. Recipes for How to Force Oceanic Model Dynamics. Journal of Advances in Modeling Earth Systems, February 2020. URL: https://onlinelibrary.wiley.com/doi/10.1029/2019MS001715 (visited on 2023-06-08), doi:10.1029/2019MS001715.

[41]

Xubin Zeng and Anton Beljaars. A prognostic scheme of sea surface skin temperature for modeling and data assimilation: SEA SURFACE SKIN TEMPERATURE SCHEME. Geophysical Research Letters, 32(14):n/a–n/a, July 2005. URL: http://doi.wiley.com/10.1029/2005GL023030 (visited on 2023-06-08), doi:10.1029/2005GL023030.

[42]

E. Blayo and L. Debreu. Revisiting open boundary conditions from the point of view of characteristic variables. Ocean Modelling, 9(3):231–252, January 2005. URL: https://linkinghub.elsevier.com/retrieve/pii/S1463500304000447 (visited on 2023-06-08), doi:10.1016/j.ocemod.2004.07.001.

[43]

Pierrick Penven, Laurent Debreu, Patrick Marchesiello, and James C. McWilliams. Evaluation and application of the ROMS 1-way embedding procedure to the central california upwelling system. Ocean Modelling, 12(1-2):157–187, January 2006. URL: https://linkinghub.elsevier.com/retrieve/pii/S1463500305000491 (visited on 2023-06-08), doi:10.1016/j.ocemod.2005.05.002.

[44]

Eric Blayo and Laurent Debreu. Adaptive Mesh Refinement for Finite-Difference Ocean Models: First Experiments. Journal of Physical Oceanography, 29(6):1239–1250, June 1999. URL: http://journals.ametsoc.org/doi/10.1175/1520-0485(1999)029<1239:AMRFFD>2.0.CO;2 (visited on 2023-06-08), doi:10.1175/1520-0485(1999)029<1239:AMRFFD>2.0.CO;2.

[45]

Laurent Debreu, Christophe Vouland, and Eric Blayo. AGRIF: Adaptive grid refinement in Fortran. Computers & Geosciences, 34(1):8–13, January 2008. URL: https://linkinghub.elsevier.com/retrieve/pii/S009830040700115X (visited on 2023-06-08), doi:10.1016/j.cageo.2007.01.009.

[46]

Meinte Blaas, Changming Dong, Patrick Marchesiello, James C. McWilliams, and Keith D. Stolzenbach. Sediment-transport modeling on Southern Californian shelves: A ROMS case study. Continental Shelf Research, 27(6):832–853, March 2007. URL: https://linkinghub.elsevier.com/retrieve/pii/S027843430600389X (visited on 2023-06-09), doi:10.1016/j.csr.2006.12.003.

[47]

RL Soulsby. Bed shear-stresses due to combined waves and currents. Advances in coastal morphodynamics, 1995.

[48]

William D. Grant and Ole Secher Madsen. Movable bed roughness in unsteady oscillatory flow. Journal of Geophysical Research, 87(C1):469, 1982. URL: http://doi.wiley.com/10.1029/JC087iC01p00469 (visited on 2023-06-09), doi:10.1029/JC087iC01p00469.

[49]

Peter Nielsen. Suspended sediment concentrations under waves. Coastal Engineering, 10(1):23–31, May 1986. URL: https://linkinghub.elsevier.com/retrieve/pii/0378383986900372 (visited on 2023-06-09), doi:10.1016/0378-3839(86)90037-2.

[50]

Michael Z Li and Carl L Amos. SEDTRANS96: the upgraded and better calibrated sediment-transport model for continental shelves. Computers & Geosciences, 27(6):619–645, July 2001. URL: https://linkinghub.elsevier.com/retrieve/pii/S0098300400001205 (visited on 2023-06-09), doi:10.1016/S0098-3004(00)00120-5.

[51]

John C. Warner, Christopher R. Sherwood, Richard P. Signell, Courtney K. Harris, and Hernan G. Arango. Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model. Computers & Geosciences, 34(10):1284–1306, October 2008. URL: https://linkinghub.elsevier.com/retrieve/pii/S0098300408000563 (visited on 2023-06-09), doi:10.1016/j.cageo.2008.02.012.

[52]

Farshad Shafiei. Nutrient mass balance of a large riverine reservoir in the context of water residence time variability. Environmental Science and Pollution Research, 28(29):39082–39100, August 2021. URL: https://link.springer.com/10.1007/s11356-021-13297-8 (visited on 2023-06-09), doi:10.1007/s11356-021-13297-8.

[53]

Courtney K. Harris and Patricia L. Wiberg. Approaches to quantifying long-term continental shelf sediment transport with an example from the Northern California STRESS mid-shelf site. Continental Shelf Research, 17(11):1389–1418, September 1997. URL: https://linkinghub.elsevier.com/retrieve/pii/S0278434397000174 (visited on 2023-06-09), doi:10.1016/S0278-4343(97)00017-4.

[54]

Dale R. Durran. Numerical Methods for Fluid Dynamics. Volume 32 of Texts in Applied Mathematics. Springer New York, New York, NY, 2010. ISBN 9781441964113 9781441964120. URL: http://link.springer.com/10.1007/978-1-4419-6412-0 (visited on 2023-06-09), doi:10.1007/978-1-4419-6412-0.

[55]

E. Meyer-Peter and R. Müller. Formulas for bed-load transport. pages 39–64, 1948.

[56]

Tarandeep S. Kalra, Christopher R. Sherwood, John C. Warner, Yashar Rafati, and Tian-Jian Hsu. INVESTIGATING BEDLOAD TRANSPORT UNDER ASYMMETRICAL WAVES USING A COUPLED OCEAN-WAVE MODEL. In Coastal Sediments 2019, 591–604. Tampa/St. Petersburg, Florida, USA, May 2019. WORLD SCIENTIFIC. URL: https://www.worldscientific.com/doi/abs/10.1142/9789811204487_0052 (visited on 2023-06-09), doi:10.1142/9789811204487_0052.

[57]

G.R. Lesser, J.A. Roelvink, J.A.T.M. Van Kester, and G.S. Stelling. Development and validation of a three-dimensional morphological model. Coastal Engineering, 51(8-9):883–915, October 2004. URL: https://linkinghub.elsevier.com/retrieve/pii/S0378383904000870 (visited on 2023-06-09), doi:10.1016/j.coastaleng.2004.07.014.

[58]

Mohammad Dibajnia and Akira Watanabe. Sheet Flow Under Nonlinear Waves and Currents. In Coastal Engineering 1992, 2015–2028. Venice, Italy, June 1993. American Society of Civil Engineers. URL: http://ascelibrary.org/doi/10.1061/9780872629332.154 (visited on 2023-06-09), doi:10.1061/9780872629332.154.

[59]

Jan S. Ribberink. Bed-load transport for steady flows and unsteady oscillatory flows. Coastal Engineering, 34(1-2):59–82, July 1998. URL: https://linkinghub.elsevier.com/retrieve/pii/S0378383998000131 (visited on 2023-06-20), doi:10.1016/S0378-3839(98)00013-1.

[60]

Leo C. van Rijn. Principles of sediment transport in rivers, estuaries and coastal seas. In 1993.

[61]

J.A. Roelvink. Coastal morphodynamic evolution techniques. Coastal Engineering, 53(2-3):277–287, February 2006. URL: https://linkinghub.elsevier.com/retrieve/pii/S0378383905001419 (visited on 2023-06-09), doi:10.1016/j.coastaleng.2005.10.015.

[62]

R.L. Soulsby. Dynamics of marine sands: a manual for practical applications. Oceanographic Literature Review, 44(9):947, 1997.

[63]

J. Dungan Smith and S. R. McLean. Spatially averaged flow over a wavy surface. Journal of Geophysical Research, 82(12):1735–1746, April 1977. URL: http://doi.wiley.com/10.1029/JC082i012p01735 (visited on 2023-06-20), doi:10.1029/JC082i012p01735.

[64]

Romaric Verney, Robert Lafite, Jean Claude Brun-Cottan, and Pierre Le Hir. Behaviour of a floc population during a tidal cycle: Laboratory experiments and numerical modelling. Continental Shelf Research, 31(10):S64–S83, July 2011. URL: https://linkinghub.elsevier.com/retrieve/pii/S0278434310000415 (visited on 2023-08-04), doi:10.1016/j.csr.2010.02.005.

[65]

Pierre Le Hir, Florence Cayocca, and Benoît Waeles. Dynamics of sand and mud mixtures: A multiprocess-based modelling strategy. Continental Shelf Research, 31(10):S135–S149, July 2011. URL: https://linkinghub.elsevier.com/retrieve/pii/S0278434310003833 (visited on 2023-06-09), doi:10.1016/j.csr.2010.12.009.

[66]

Baptiste Mengual, Pierre Le Hir, Aurélie Rivier, Matthieu Caillaud, and Florent Grasso. Numerical modeling of bedload and suspended load contributions to morphological evolution of the Seine Estuary (France). International Journal of Sediment Research, 36(6):723–735, December 2021. URL: https://linkinghub.elsevier.com/retrieve/pii/S1001627920300755 (visited on 2023-06-26), doi:10.1016/j.ijsrc.2020.07.003.

[67]

Aurélie Rivier, Pierre Le Hir, Pascal Bailly Du Bois, Philippe Laguionie, and Mehdi Morillon. Numerical modelling of heterogeneous sediment transport: new insights for particulate radionuclide transport and deposition. 2017. URL: https://archimer.ifremer.fr/doc/00394/50580/.

[68]

Leo C. Van Rijn. Sediment Pick‐Up Functions. Journal of Hydraulic Engineering, 110(10):1494–1502, October 1984. URL: https://ascelibrary.org/doi/10.1061/%28ASCE%290733-9429%281984%29110%3A10%281494%29 (visited on 2023-06-26), doi:10.1061/(ASCE)0733-9429(1984)110:10(1494).

[69]

Weiming Wu and Qianru Lin. Nonuniform sediment transport under non-breaking waves and currents. Coastal Engineering, 90:1–11, August 2014. URL: https://linkinghub.elsevier.com/retrieve/pii/S0378383914000763 (visited on 2023-06-26), doi:10.1016/j.coastaleng.2014.04.006.

[70]

Baptiste Mengual, Pierre Le Hir, Florence Cayocca, and Thierry Garlan. Modelling Fine Sediment Dynamics: Towards a Common Erosion Law for Fine Sand, Mud and Mixtures. Water, 9(8):564, July 2017. URL: http://www.mdpi.com/2073-4441/9/8/564 (visited on 2023-06-09), doi:10.3390/w9080564.

[71]

Weiming Wu and Wei Li. Porosity of bimodal sediment mixture with particle filling. International Journal of Sediment Research, 32(2):253–259, June 2017. URL: https://linkinghub.elsevier.com/retrieve/pii/S1001627917300793 (visited on 2023-06-26), doi:10.1016/j.ijsrc.2017.03.005.

[72]

John K. Wooster, Scott R. Dusterhoff, Yantao Cui, Leonard S. Sklar, William E. Dietrich, and Mary Malko. Sediment supply and relative size distribution effects on fine sediment infiltration into immobile gravels: FINE SEDIMENT INFILTRATION INTO IMMOBILE GRAVELS. Water Resources Research, March 2008. URL: http://doi.wiley.com/10.1029/2006WR005815 (visited on 2023-06-09), doi:10.1029/2006WR005815.

[73]

Yantao Cui, Chris Paola, and Gary Parker. Numerical simulation of aggradation and downstream fining. Journal of Hydraulic Research, 34(2):185–204, March 1996. URL: https://www.tandfonline.com/doi/full/10.1080/00221689609498496 (visited on 2023-06-20), doi:10.1080/00221689609498496.

[74]

L. M. Merckelbach and C. Kranenburg. Equations for effective stress and permeability of soft mud–sand mixtures. Géotechnique, 54(4):235–243, May 2004. URL: https://www.icevirtuallibrary.com/doi/10.1680/geot.2004.54.4.235 (visited on 2023-06-09), doi:10.1680/geot.2004.54.4.235.

[75]

W. H. McAnally. Aggregation and deposition of estuarial fine sediment. PhD thesis, University of Florida, 1999.

[76]

J.C. Winterwerp, A.J. Bale, M.C. Christie, K.R. Dyer, S. Jones, D.G. Lintern, A.J. Manning, and W. Roberts. Flocculation and settling velocity of fine sediment. In Proceedings in Marine Science, volume 5, pages 25–40. Elsevier, 2002. URL: https://linkinghub.elsevier.com/retrieve/pii/S1568269202800067 (visited on 2023-06-09), doi:10.1016/S1568-2692(02)80006-7.

[77]

W. van Leussen. Estuarine macroflocs and their role in fine-grained sediment transport. PhD thesis, University of Utrecht, 1994.

[78]

J.C. Winterwerp. On the dynamic of high-concentrated mud suspensions. 99:, 01 1999.

[79]

Eric Wolanski, Takashi Asaeda, and Jorg Imberger. Mixing across a lutocline. Limnology and Oceanography, 34(5):931–938, July 1989. URL: http://doi.wiley.com/10.4319/lo.1989.34.5.0931 (visited on 2023-06-20), doi:10.4319/lo.1989.34.5.0931.

[80]

M. Smoluchowski. Versuch einer mathematischen theorie des koagulations-kinetik kolloid losungen. Zeitschrift fur Physikalisch@phdthesise Chemie, 92:129–168, 1917.

[81]

C. Kranenburg. The fractal structure of cohesive sediment aggregates. Estuarine, Coastal and Shelf Science, 39(6):451–460, January 1994. URL: https://linkinghub.elsevier.com/retrieve/pii/S0272771406800028 (visited on 2023-06-20), doi:10.1016/S0272-7714(06)80002-8.

[82]

W.H. McAnally and A.J. Mehta. Collisional aggregation of fine estuarial sediment. In Proceedings in Marine Science, volume 3, pages 19–39. Elsevier, 2000. URL: https://linkinghub.elsevier.com/retrieve/pii/S1568269200801102 (visited on 2023-08-04), doi:10.1016/S1568-2692(00)80110-2.

[83]

W.H. McAnally and A.J. Mehta. Significance of Aggregation of Fine Sediment Particles in Their Deposition. Estuarine, Coastal and Shelf Science, 54(4):643–653, April 2002. URL: https://linkinghub.elsevier.com/retrieve/pii/S0272771401908479 (visited on 2023-08-04), doi:10.1006/ecss.2001.0847.

[84]

Katerini Kombiadou, Florian Ganthy, Verney Romaric, Martin Plus, and Sottolichio Aldo. Modelling the effects of zostera noltei meadows on sediment dynamics: application to the arcachon lagoon. Ocean Dynamics, 64(10):1499–1516, 2014. URL:, doi:https://doi.org/10.1007/s10236-014-0754-1.

[85]

Florian Ganthy, Romaric Verney, and Franck Dumas. Improvements of a process-based model for 2- and 3-dimensional simulation of flow in presence of various obstructions. Preprint available at SSRN: https://ssrn.com/abstract=4775274 or http://dx.doi.org/10.2139/ssrn.4775274, 2024.

[86]

Mohamed Abdelrhman. Modeling coupling between eelgrass zostera marina and water flow. Marine Ecology-progress Series - MAR ECOL-PROGR SER, 338:81–96, 05 2007. doi:10.3354/meps338081.

[87]

Mohamed Abdelrhman. Effect of eelgrass zostera marina canopies on flow and transport. Marine Ecology-progress Series - MAR ECOL-PROGR SER, 248:67–83, 02 2003. doi:10.3354/meps248067.

[88]

Nicolas Gruber, Hartmut Frenzel, Scott C. Doney, Patrick Marchesiello, James C. McWilliams, John R. Moisan, John J. Oram, Gian-Kasper Plattner, and Keith D. Stolzenbach. Eddy-resolving simulation of plankton ecosystem dynamics in the California Current System. Deep Sea Research Part I: Oceanographic Research Papers, 53(9):1483–1516, September 2006. URL: https://linkinghub.elsevier.com/retrieve/pii/S0967063706001713 (visited on 2023-06-09), doi:10.1016/j.dsr.2006.06.005.

[89]

Nicolas Gruber, Zouhair Lachkar, Hartmut Frenzel, Patrick Marchesiello, Matthias Münnich, James C. McWilliams, Takeyoshi Nagai, and Gian-Kasper Plattner. Eddy-induced reduction of biological production in eastern boundary upwelling systems. Nature Geoscience, 4(11):787–792, November 2011. URL: https://www.nature.com/articles/ngeo1273 (visited on 2023-06-09), doi:10.1038/ngeo1273.

[90]

E. Gutknecht, I. Dadou, B. Le Vu, G. Cambon, J. Sudre, V. Garçon, E. Machu, T. Rixen, A. Kock, A. Flohr, A. Paulmier, and G. Lavik. Coupled physical/biogeochemical modeling including O&lt;sub&gt;2&lt;/sub&gt;-dependent processes in the Eastern Boundary Upwelling Systems: application in the Benguela. Biogeosciences, 10(6):3559–3591, June 2013. URL: https://bg.copernicus.org/articles/10/3559/2013/ (visited on 2023-06-09), doi:10.5194/bg-10-3559-2013.

[91]

B. Aumont, S. Szopa, and S. Madronich. Modelling the evolution of organic carbon during its gas-phase tropospheric oxidation: development of an explicit model based on a self generating approach. Atmospheric Chemistry and Physics, 5(9):2497–2517, September 2005. URL: https://acp.copernicus.org/articles/5/2497/2005/ (visited on 2023-06-09), doi:10.5194/acp-5-2497-2005.

[92]

Martin Huret, Isabelle Dadou, Franck Dumas, Pascal Lazure, and Véronique Garçon. Coupling physical and biogeochemical processes in the Río de la Plata plume. Continental Shelf Research, 25(5-6):629–653, March 2005. URL: https://linkinghub.elsevier.com/retrieve/pii/S0278434304002614 (visited on 2023-06-09), doi:10.1016/j.csr.2004.10.003.

[93]

E.V. Yakushev, F. Pollehne, G. Jost, I. Kuznetsov, B. Schneider, and L. Umlauf. Analysis of the water column oxic/anoxic interface in the Black and Baltic seas with a numerical model. Marine Chemistry, 107(3):388–410, December 2007. URL: https://linkinghub.elsevier.com/retrieve/pii/S0304420307001314 (visited on 2023-06-09), doi:10.1016/j.marchem.2007.06.003.

[94]

Teodoro Coba De La Peña, Francisco J. Redondo, Esteban Manrique, M. M. Lucas, and José J. Pueyo. Nitrogen fixation persists under conditions of salt stress in transgenic Medicago truncatula plants expressing a cyanobacterial flavodoxin: Flavodoxin induces salt tolerance in nodules. Plant Biotechnology Journal, 8(9):954–965, December 2010. URL: https://onlinelibrary.wiley.com/doi/10.1111/j.1467-7652.2010.00519.x (visited on 2023-06-09), doi:10.1111/j.1467-7652.2010.00519.x.

[95]

P. Suntharalingam, J. L. Sarmiento, and J. R. Toggweiler. Global significance of nitrous-oxide production and transport from oceanic low-oxygen zones: A modeling study. Global Biogeochemical Cycles, 14(4):1353–1370, December 2000. URL: http://doi.wiley.com/10.1029/1999GB900100 (visited on 2023-06-09), doi:10.1029/1999GB900100.

[96]

Parvadha Suntharalingam, Erik Buitenhuis, Corinne Le Quéré, Frank Dentener, Cynthia Nevison, James H. Butler, Hermann W. Bange, and Grant Forster. Quantifying the impact of anthropogenic nitrogen deposition on oceanic nitrous oxide: ANTHROPOGENIC N DEPOSITION AND OCEAN N $_\textrm 2$ O. Geophysical Research Letters, 39(7):n/a–n/a, April 2012. URL: http://doi.wiley.com/10.1029/2011GL050778 (visited on 2023-06-09), doi:10.1029/2011GL050778.

[97]

Giulio Boccaletti, Ronald C. Pacanowski, S. George, H. Philander, and Alexey V. Fedorov. The Thermal Structure of the Upper Ocean. Journal of Physical Oceanography, 34(4):888–902, April 2004. URL: http://journals.ametsoc.org/doi/10.1175/1520-0485(2004)034<0888:TTSOTU>2.0.CO;2 (visited on 2023-06-21), doi:10.1175/1520-0485(2004)034<0888:TTSOTU>2.0.CO;2.

[98]

Philippe Estrade, Patrick Marchesiello, Alain Colin De Verdière, and Claude Roy. Cross-shelf structure of coastal upwelling: A two — dimensional extension of Ekman's theory and a mechanism for inner shelf upwelling shut down. Journal of Marine Research, 66(5):589–616, September 2008. URL: http://openurl.ingenta.com/content/xref?genre=article&issn=0022-2402&volume=66&issue=5&spage=589 (visited on 2023-06-21), doi:10.1357/002224008787536790.

[99]

P. Marchesiello and P. Estrade. Upwelling limitation by onshore geostrophic flow. Journal of Marine Research, 68(1):37–62, January 2010. URL: http://www.ingentaconnect.com/content/10.1357/002224010793079004 (visited on 2023-06-21), doi:10.1357/002224010793079004.

[100]

John P. Boyd. Equatorial Solitary Waves. Part I: Rossby Solitons. Journal of Physical Oceanography, 10(11):1699–1717, November 1980. URL: http://journals.ametsoc.org/doi/10.1175/1520-0485(1980)010<1699:ESWPIR>2.0.CO;2 (visited on 2023-06-21), doi:10.1175/1520-0485(1980)010<1699:ESWPIR>2.0.CO;2.

[101]

William Carlisle Thacker. Some exact solutions to the nonlinear shallow-water wave equations. Journal of Fluid Mechanics, 107(-1):499, June 1981. URL: http://www.journals.cambridge.org/abstract_S0022112081001882 (visited on 2023-06-21), doi:10.1017/S0022112081001882.

[102]

James C. McWilliams and Glenn R. Flierl. On the Evolution of Isolated, Nonlinear Vortices. Journal of Physical Oceanography, 9(6):1155–1182, November 1979. URL: http://journals.ametsoc.org/doi/10.1175/1520-0485(1979)009<1155:OTEOIN>2.0.CO;2 (visited on 2023-06-21), doi:10.1175/1520-0485(1979)009<1155:OTEOIN>2.0.CO;2.

[103]

Emanuele Di Lorenzo, William R. Young, and Stefan Llewellyn Smith. Numerical and Analytical Estimates of M2 Tidal Conversion at Steep Oceanic Ridges. Journal of Physical Oceanography, 36(6):1072–1084, June 2006. URL: http://journals.ametsoc.org/doi/10.1175/JPO2880.1 (visited on 2023-06-21), doi:10.1175/JPO2880.1.

[104]

B. Weir, Y. Uchiyama, E. M. Lane, J. M. Restrepo, and J. C. McWilliams. A vortex force analysis of the interaction of rip currents and surface gravity waves. Journal of Geophysical Research, 116(C5):C05001, May 2011. URL: http://doi.wiley.com/10.1029/2010JC006232 (visited on 2023-06-21), doi:10.1029/2010JC006232.

[105]

Patrick Marchesiello, Francis Auclair, Laurent Debreu, James McWilliams, Rafael Almar, Rachid Benshila, and Franck Dumas. Tridimensional nonhydrostatic transient rip currents in a wave-resolving model. Ocean Modelling, 163:101816, July 2021. URL: https://linkinghub.elsevier.com/retrieve/pii/S1463500321000676 (visited on 2023-06-21), doi:10.1016/j.ocemod.2021.101816.

[106]

Patrick Marchesiello, Julien Chauchat, Hassan Shafiei, Rafael Almar, Rachid Benshila, Franck Dumas, and Laurent Debreu. 3D wave-resolving simulation of sandbar migration. Ocean Modelling, 180:102127, December 2022. URL: https://linkinghub.elsevier.com/retrieve/pii/S146350032200141X (visited on 2023-06-21), doi:10.1016/j.ocemod.2022.102127.

[107]

Hervé Michallet, B. Gerben Ruessink, Mariana Vieira Lima Matias da Rocha, Anouk de Bakker, Dominic A. van Der A, Andrea Ruju, Paulo A. Silva, Nadia Sénéchal, Vincent Marieu, Marion Tissier, Rafael Almar, Tiago Abreu, Florent Birrien, Laure Vignal, Eric Barthélemy, Dominique Mouazé, Rodrigo Cienfuegos, and Peter Wellens. GLOBEX: Wave dynamics on a shallow sloping beach. In HYDRALAB IV Joint User Meeting, Lisbon, July 2014. Lisbonne, Portugal, July 2014. URL: https://hal.science/hal-01084718.

[108]

XinJian Chen. A fully hydrodynamic model for three-dimensional, free-surface flows. International Journal for Numerical Methods in Fluids, 42(9):929–952, July 2003. URL: https://onlinelibrary.wiley.com/doi/10.1002/fld.557 (visited on 2023-06-21), doi:10.1002/fld.557.

[109]

J. O. Shin, S. B. Dalziel, and P. F. Linden. Gravity currents produced by lock exchange. Journal of Fluid Mechanics, 521:1–34, December 2004. URL: http://www.journals.cambridge.org/abstract_S002211200400165X (visited on 2023-06-21), doi:10.1017/S002211200400165X.

[110]

Mehmet Ilıcak, Alistair J. Adcroft, Stephen M. Griffies, and Robert W. Hallberg. Spurious dianeutral mixing and the role of momentum closure. Ocean Modelling, 45-46:37–58, January 2012. URL: https://linkinghub.elsevier.com/retrieve/pii/S1463500311001685 (visited on 2023-06-21), doi:10.1016/j.ocemod.2011.10.003.

[111]

D. A. Horn, J. Imberger, and G. N. Ivey. The degeneration of large-scale interfacial gravity waves in lakes. Journal of Fluid Mechanics, 434:181–207, May 2001. URL: https://www.cambridge.org/core/product/identifier/S0022112001003536/type/journal_article (visited on 2023-06-21), doi:10.1017/S0022112001003536.

[112]

Jared Penney, Yves Morel, Peter Haynes, Francis Auclair, and Cyril Nguyen. Diapycnal mixing of passive tracers by Kelvin–Helmholtz instabilities. Journal of Fluid Mechanics, 900:A26, October 2020. URL: https://www.cambridge.org/core/product/identifier/S0022112020004838/type/journal_article (visited on 2023-06-21), doi:10.1017/jfm.2020.483.

[113]

Wen Long, James T. Kirby, and Zhiyu Shao. A numerical scheme for morphological bed level calculations. Coastal Engineering, 55(2):167–180, February 2008. URL: https://linkinghub.elsevier.com/retrieve/pii/S0378383907001068 (visited on 2023-06-21), doi:10.1016/j.coastaleng.2007.09.009.

[114]

Christopher R. Sherwood, Alfredo L. Aretxabaleta, Courtney K. Harris, J. Paul Rinehimer, Romaric Verney, and Bénédicte Ferré. Cohesive and mixed sediment in the Regional Ocean Modeling System (ROMS v3.6) implemented in the Coupled Ocean–Atmosphere–Wave–Sediment Transport Modeling System (COAWST r1234). Geoscientific Model Development, 11(5):1849–1871, May 2018. URL: https://gmd.copernicus.org/articles/11/1849/2018/ (visited on 2023-06-21), doi:10.5194/gmd-11-1849-2018.

[115]

Thomas Kilpatrick, Niklas Schneider, and Bo Qiu. Boundary Layer Convergence Induced by Strong Winds across a Midlatitude SST Front*. Journal of Climate, 27(4):1698–1718, February 2014. URL: http://journals.ametsoc.org/doi/10.1175/JCLI-D-13-00101.1 (visited on 2022-02-09), doi:10.1175/JCLI-D-13-00101.1.

[116]

Michael A. Spall. Midlatitude Wind Stress–Sea Surface Temperature Coupling in the Vicinity of Oceanic Fronts. Journal of Climate, 20(15):3785–3801, August 2007. URL: http://journals.ametsoc.org/doi/10.1175/JCLI4234.1 (visited on 2022-02-09), doi:10.1175/JCLI4234.1.

[117]

Alex Ayet and Jean‐Luc Redelsperger. An analytical study of the atmospheric boundary‐layer flow and divergence over an SST front. Quarterly Journal of the Royal Meteorological Society, 145(723):2549–2567, July 2019. URL: https://onlinelibrary.wiley.com/doi/10.1002/qj.3578 (visited on 2022-03-31), doi:10.1002/qj.3578.

[118]

Florian Lemarié, Guillaume Samson, Jean-Luc Redelsperger, Hervé Giordani, Théo Brivoal, and Gurvan Madec. A simplified atmospheric boundary layer model for an improved representation of air–sea interactions in eddying oceanic models: implementation and first evaluation in NEMO (4.0). Geoscientific Model Development, 14(1):543–572, January 2021. URL: https://gmd.copernicus.org/articles/14/543/2021/ (visited on 2021-04-08), doi:10.5194/gmd-14-543-2021.

[119]

Florian Ganthy, Laura Soissons, Pierre-Guy Sauriau, Romaric Verney, and Aldo Sottolichio. Effects of short flexible seagrass zostera noltei on flow, erosion and deposition processes determined using flume experiments. Sedimentology, 62(4):997–1023, 2015. URL: https://archimer.ifremer.fr/doc/00244/35507/, doi:https://doi.org/10.1111/sed.12170.

[120]

Florian Ganthy. Rôle des herbiers de zostères (Zostera noltii) sur la dynamique sédimentaire du Bassin d'Arcachon. PhD thesis, Universté de Bordeaux 1, 12 2011. URL: https://archimer.ifremer.fr/doc/00060/17170/.

[121]

George L. Mellor and Tetsuji Yamada. A Hierarchy of Turbulence Closure Models for Planetary Boundary Layers. Journal of the Atmospheric Sciences, 31(7):1791–1806, October 1974. URL: http://journals.ametsoc.org/doi/10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2 (visited on 2023-06-21), doi:10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2.

[122]

George Mellor. The Three-Dimensional Current and Surface Wave Equations. Journal of Physical Oceanography, 33(9):1978–1989, September 2003. URL: http://journals.ametsoc.org/doi/10.1175/1520-0485(2003)033<1978:TTCASW>2.0.CO;2 (visited on 2023-06-21), doi:10.1175/1520-0485(2003)033<1978:TTCASW>2.0.CO;2.

[123]

W. P. Budgell. Numerical simulation of ice-ocean variability in the Barents Sea region: Towards dynamical downscaling. Ocean Dynamics, 55(3-4):370–387, December 2005. URL: http://link.springer.com/10.1007/s10236-005-0008-3 (visited on 2023-06-21), doi:10.1007/s10236-005-0008-3.

[124]

James A. Carton. Sea level rise and the warming of the oceans in the Simple Ocean Data Assimilation (SODA) ocean reanalysis. Journal of Geophysical Research, 110(C9):C09006, 2005. URL: http://doi.wiley.com/10.1029/2004JC002817 (visited on 2023-06-21), doi:10.1029/2004JC002817.

[125]

Jean-Michel Lellouche, Eric Greiner, Romain Bourdallé-Badie, Gilles Garric, Angelique Melet, Marie Drévillon, Clément Bricaud, Mathieu Hamon, Olivier Le Galloudec, Charly Regnier, Tony Candela, Charles-Emmanuel Testut, Florent Gasparin, Giovanni Ruggiero, Mounir Benkiran, Yann Drillet, and Le Traon Pierre-Yves. Frontiers In Earth Science, 2021. doi:https://doi.org/10.3389/feart.2021.698876.

[126]

Gary D. Egbert and Svetlana Y. Erofeeva. Efficient Inverse Modeling of Barotropic Ocean Tides. Journal of Atmospheric and Oceanic Technology, 19(2):183–204, February 2002. URL: http://journals.ametsoc.org/doi/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2 (visited on 2023-06-21), doi:10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.

[127]

Wessel, P. and W. H. F. Smith. A global self-consistent, hierarchical, high-resolution shoreline database. J. Geophys. Res., 101():8741–8743, 1996.

[128]

Kenneth S. Casey and Peter Cornillon. A Comparison of Satellite and In Situ–Based Sea Surface Temperature Climatologies. Journal of Climate, 12(6):1848–1863, June 1999. URL: http://journals.ametsoc.org/doi/10.1175/1520-0442(1999)012<1848:ACOSAI>2.0.CO;2 (visited on 2023-06-21), doi:10.1175/1520-0442(1999)012<1848:ACOSAI>2.0.CO;2.

[129]

Walter H. F. Smith and David T. Sandwell. Global Sea Floor Topography from Satellite Altimetry and Ship Depth Soundings. Science, 277(5334):1956–1962, September 1997. URL: https://www.science.org/doi/10.1126/science.277.5334.1956 (visited on 2023-06-21), doi:10.1126/science.277.5334.1956.

[130]

O. Aumont and L. Bopp. Globalizing results from ocean in situ iron fertilization studies: GLOBALIZING IRON FERTILIZATION. Global Biogeochemical Cycles, 20(2):n/a–n/a, June 2006. URL: http://doi.wiley.com/10.1029/2005GB002591 (visited on 2023-06-21), doi:10.1029/2005GB002591.

[131]

Marchesiello, Lefèvre, Pierrick Penven, Florian Lemarié, Laurent Debreu, Pascal Douillet, A. Vega, P. Derex, Vincent Echevin, and Boris Dewitte. Keys to affordable regional marine forecast systems. In 2008. URL: https://api.semanticscholar.org/CorpusID:135117833.

[132]

R. A. Flather and A. M. Davies. Note on a preliminary scheme for storm surge prediction using numerical models. Quarterly Journal of the Royal Meteorological Society, 102(431):123–132, January 1976. URL: https://onlinelibrary.wiley.com/doi/10.1002/qj.49710243110 (visited on 2023-06-21), doi:10.1002/qj.49710243110.

[133]

Jie Yu. Effects of wave-current interaction on rip currents. Journal of Geophysical Research, 108(C3):3088, 2003. URL: http://doi.wiley.com/10.1029/2001JC001105 (visited on 2023-06-21), doi:10.1029/2001JC001105.